We show that a constant factor approximation of the shortest and closest lattice vector problem in any norm can be computed in time $2^{0.802\, n}$. This contrasts the corresponding $2^n$ time, (gap)-SETH based lower bounds for these problems that even apply for small constant approximation. For both problems, $\mathrm{SVP}$ and $\mathrm{CVP}$, we reduce to the case of the Euclidean norm. A key technical ingredient in that reduction is a twist of Milman's construction of an $M$-ellipsoid which approximates any symmetric convex body $K$ with an ellipsoid $\mathcal{E}$ so that $2^{\varepsilon n}$ translates of a constant scaling of $\mathcal{E}$ can cover $K$ and vice versa.
翻译:我们显示,任何规范中最短和最接近的 lattice 矢量问题的恒定系数近似值可以按时间 $2 ⁇ 0.802\, n} 来计算。 这对比了相应的 $0 美元时间, (gap)- SETH 用于这些问题的下限, 甚至适用于小常数近似值。 对于这两个问题, $\ mathrm{SVP} $ 和 $\ mathrm{CVP} 美元, 我们将两者都降低到 欧几里德 规范 。 减少的关键技术成分是 Milman 建造的 $M / ell obus 构造的曲折, 相当于 $ $ KK 和 $\ mathcal{E}, 因此$2 varepsilon n} 将 折成 $\ mathcal{E} 的恒定比例转换成 $ 和 美元反之。