We study the problem of the embedding degree of an abelian variety over a finite field which is vital in pairing-based cryptography. In particular, we show that for a prescribed CM field $L$ of degree $\geq 4$, prescribed integers $m$, $n$ and any prime $\ell\equiv 1 \mod{mn}$ that splits completely in $L$, there exists an ordinary abelian variety over a prime finite field with endomorphism algebra $L$, embedding degree $n$ with respect to $\ell$ and the field extension generated by the $\ell$-torsion points of degree $mn$ over the field of definition. We also study a class of absolutely simple higher dimensional abelian varieties whose endomorphism algebras are central over imaginary quadratic fields.
翻译:我们研究了在对配制加密中至关重要的有限字段中嵌入子宫品种的程度问题。特别是,我们表明,对于一个指定的CM字段,在定义领域,对于一个限定的CM字段,以美元计4美元,以美元计4美元,以美元计4美元,以美元计1美元计整数,以及任何以美元计整数的纯美1美元=equiv 美元=mod{mn}美元计数,存在一种普通的卵巢品种,以美元计数,以美元计数,以美元计数,以美元计数,以美元计数,以美元计数,在定义领域,以美元计数,以美元计数,以美元计数,以美元计数,以美元计数,以美元计数,以美元计数。我们还研究了一组绝对高的维贝罗品种,其内型变形变形变形变形变形的品种在想象中居于中心。