Deep neural networks have shown great success in prediction quality while reliable and robust uncertainty estimation remains a challenge. Predictive uncertainty supplements model predictions and enables improved functionality of downstream tasks including embedded and mobile applications, such as virtual reality, augmented reality, sensor fusion, and perception. These applications often require a compromise in complexity to obtain uncertainty estimates due to very limited memory and compute resources. We tackle this problem by building upon Monte Carlo Dropout (MCDO) models using the Axolotl framework; specifically, we diversify sampled subnetworks, leverage dropout patterns, and use a branching technique to improve predictive performance while maintaining fast computations. We conduct experiments on (1) a multi-class classification task using the CIFAR10 dataset, and (2) a more complex human body segmentation task. Our results show the effectiveness of our approach by reaching close to Deep Ensemble prediction quality and uncertainty estimation, while still achieving faster inference on resource-limited mobile platforms.
翻译:预测性不确定性补充了模型预测,并改进了下游任务的功能,包括嵌入和移动应用,如虚拟现实、增强现实、传感器聚合和感知等。这些应用往往需要复杂的妥协,以获得不确定性的估计,因为记忆和计算资源非常有限。我们通过利用Axolotl框架利用蒙特卡洛(MCDO)的脱落模型来解决这一问题;具体地说,我们使抽样子网络多样化,利用退出模式,并使用分支技术来改进预测性能,同时保持快速计算。我们进行了以下实验:(1) 利用CIFAR10数据集进行多级分类任务,以及(2) 开展更复杂的人体分解任务。我们的结果通过接近深度的预测质量和不确定性估计,同时对资源有限的流动平台作出更快的推断,显示了我们方法的有效性。