Direct Preference Optimization (DPO) has recently emerged as a simple and effective alternative to reinforcement learning from human feedback (RLHF) for aligning large language models (LLMs) with user preferences. However, existing DPO formulations rely on a single monolithic model, which limits their expressivity in multi-task settings and their adaptability to heterogeneous or diverse preference distributions. In this work, we propose Mix- and MoE-DPO, a framework that extends DPO with both soft mixture models and mixture-of-experts (MoE) architectures, using a stochastic variational inference approach. Our method introduces a latent-variable model over expert assignments and optimizes a variational evidence lower bound (ELBO), enabling stable and efficient learning of specialized expert policies from preference data. Mix- and MoE-DPO provides three key advantages over standard DPO: (i) generalization via universal function approximation through mixtures; (ii) reward and policy specialization through expert components tailored to distinct preference modes; and (iii) contextual alignment through input-dependent soft gating that enables user-specific mixture policies. Our framework supports both shared base architectures with expert-specific policy heads and fully independent expert models, allowing flexible trade-offs between parameter efficiency and specialization. We validate our approach on a variety of model sizes and multi-preference datasets, demonstrating that Mix- and MoE-DPO offers a powerful and scalable method for preference-based LLM alignment.
翻译:暂无翻译