Recent works have shown the ability of Implicit Neural Representations (INR) to carry meaningful representations of signal derivatives. In this work, we leverage this property to perform Video Frame Interpolation (VFI) by explicitly constraining the derivatives of the INR to satisfy the optical flow constraint equation. We achieve state of the art VFI on limited motion ranges using only a target video and its optical flow, without learning the interpolation operator from additional training data. We further show that constraining the INR derivatives not only allows to better interpolate intermediate frames but also improves the ability of narrow networks to fit the observed frames, which suggests potential applications to video compression and INR optimization.
翻译:最近的工作显示,隐形神经代表系统(INR)有能力对信号衍生物进行有意义的描述;在这项工作中,我们利用这一属性进行视频框架内插,明确限制IR的衍生物以满足光学流量限制等式;我们仅使用目标视频及其光学流动,而不必从其他培训数据中了解内插操作者,就实现了关于有限运动范围的最先进的VFI状态;我们进一步表明,限制INR衍生物不仅可以更好地对中间框架进行内插,而且可以提高窄网络适应所观察到的框架的能力,这表明了对视频压缩和INR优化的潜在应用。