This paper has proposed a novel approach to classify the subjects' smoking behavior by extracting relevant regions from a given image using deep learning. After the classification, we have proposed a conditional detection module based on Yolo-v3, which improves model's performance and reduces its complexity. As per the best of our knowledge, we are the first to work on this dataset. This dataset contains a total of 2,400 images that include smokers and non-smokers equally in various environmental settings. We have evaluated the proposed approach's performance using quantitative and qualitative measures, which confirms its effectiveness in challenging situations. The proposed approach has achieved a classification accuracy of 96.74% on this dataset.


翻译:本文提出了一个新颖的方法,通过利用深层学习从特定图像中提取相关区域来对吸烟行为进行分类。 在分类后,我们提出了一个基于Yolo-v3的有条件检测模块,该模块将改进模型的性能并降低其复杂性。根据我们最先进的知识,我们首先研究这一数据集。该数据集包含总共2,400个图像,包括不同环境环境中的吸烟者和非吸烟者。我们用定量和定性衡量标准评估了拟议方法的绩效,这证实了其在具有挑战性的情况下的有效性。拟议方法的分类精确度达到了该数据集的96.74%。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月15日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员