The process of learning a manipulation task depends strongly on the action space used for exploration: posed in the incorrect action space, solving a task with reinforcement learning can be drastically inefficient. Additionally, similar tasks or instances of the same task family impose latent manifold constraints on the most effective action space: the task family can be best solved with actions in a manifold of the entire action space of the robot. Combining these insights we present LASER, a method to learn latent action spaces for efficient reinforcement learning. LASER factorizes the learning problem into two sub-problems, namely action space learning and policy learning in the new action space. It leverages data from similar manipulation task instances, either from an offline expert or online during policy learning, and learns from these trajectories a mapping from the original to a latent action space. LASER is trained as a variational encoder-decoder model to map raw actions into a disentangled latent action space while maintaining action reconstruction and latent space dynamic consistency. We evaluate LASER on two contact-rich robotic tasks in simulation, and analyze the benefit of policy learning in the generated latent action space. We show improved sample efficiency compared to the original action space from better alignment of the action space to the task space, as we observe with visualizations of the learned action space manifold. Additional details: https://www.pair.toronto.edu/laser
翻译:学习操纵任务的过程在很大程度上取决于用于探索的行动空间:在不正确的行动空间中提出,解决强化学习的任务可能非常低效。此外,类似的任务或同一任务组的类似任务或实例对最有效的行动空间造成潜在的多重限制:任务组最好在机器人整个行动空间的多个方面采取行动:任务组最好通过在机器人整个行动空间中采取行动来解决。我们介绍LASER,这是学习潜在行动空间以有效强化学习的潜在行动空间的一种方法。LASER将学习问题纳入两个子问题,即行动空间学习和新行动空间的政策学习。它利用了类似操作任务中的数据,无论是从离线专家还是政策学习期间的在线数据,并从这些轨迹中学习了从原始活动空间到潜在行动空间的图象学。LASER被训练成一个变异的编码器-解码器模型,将原始行动规划成一个不相交织的潜在行动空间空间,同时保持行动重建和潜伏空间动态的一致性。我们评估LASER在模拟中的两项接触丰富的机器人任务,并分析在生成的潜在行动空间空间空间空间空间空间空间中的政策学习的效益。我们展示了从原始空间图像化到原始空间的更精细化。我们展示了将空间的图像化。我们展示了将空间的样本到原始动作。我们所观测到原始空间的模型的比。