Location-based services are getting more popular day by day. Finding nearby stores, proximity-based marketing, on-road service assistance, etc., are some of the services that use location-based services. In location-based services, user information like user identity, user query, and location must be protected. Ma et al. (INFOCOM-BigSecurity 2019) proposed a privacy-preserving location-based service using Somewhat Homomorphic Encryption (SHE). Their protocol uses edge nodes that compute on SHE encrypted location data and determines the $k$-nearest points of interest contained in the Location-based Server (LBS) without revealing the original user coordinates to LBS, hence, ensuring privacy of users locations. In this work, we show that the above protocol by Ma et al. has a critical flaw. In particular, we show that their secure comparison protocol has a correctness issue in that it will not lead to correct comparison. A major consequence of this flaw is that straightforward approaches to fix this issue will make their protocol insecure. Namely, the LBS will be able to recover the actual locations of the users in each and every query.


翻译:基于位置的服务日复一日地越来越受欢迎。 寻找附近的商店、 近距离营销、 在线服务援助等是使用基于位置服务的一些服务。 在基于位置的服务中,用户信息,如用户身份、用户查询和地点必须受到保护。 Ma et al. (INFOCOM-Big Security 2019) 提议使用Somewhome Comodry加密(SHE) 提供基于隐私的基于位置的服务。他们的协议使用边节点,根据SHE加密的定位数据计算,确定基于位置服务器(LBS)中包含的$k$-near利益点,而不向LBS披露原始用户坐标,从而确保用户的隐私。 在这项工作中,我们显示Ma et al. 的上述协议有一个关键的缺陷。 我们特别表明,他们的安全比较协议有一个正确的问题, 因为它不会导致准确的比较。 这种缺陷的一个主要后果是, 直接解决这个问题的方法会使其协议变得不安全。 也就是说, LBS 能够恢复每个问题中用户的实际位置。

0
下载
关闭预览

相关内容

基于位置的应用。通常与智能手机(移动终端)的应用相结合,如签到,查找附近的好友和服务等。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Verifiable Differential Privacy
Arxiv
0+阅读 · 2023年1月20日
Arxiv
0+阅读 · 2023年1月19日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员