Chatbots have become one of the main pathways for the delivery of business automation tools. Multi-agent systems offer a framework for designing chatbots at scale, making it easier to support complex conversations that span across multiple domains as well as enabling developers to maintain and expand their capabilities incrementally over time. However, multi-agent systems complicate the natural language understanding (NLU) of user intents, especially when they rely on decentralized NLU models: some utterances (termed single intent) may invoke a single agent while others (termed multi-intent) may explicitly invoke multiple agents. Without correctly parsing multi-intent inputs, decentralized NLU approaches will not achieve high prediction accuracy. In this paper, we propose an efficient parsing and orchestration pipeline algorithm to service multi-intent utterances from the user in the context of a multi-agent system. Our proposed approach achieved comparable performance to competitive deep learning models on three different datasets while being up to 48 times faster.
翻译:暂无翻译