Weakly supervised object localization (WSOL) aims to localize objects by only utilizing image-level labels. Class activation maps (CAMs) are the commonly used features to achieve WSOL. However, previous CAM-based methods did not take full advantage of the shallow features, despite their importance for WSOL. Because shallow features are easily buried in background noise through conventional fusion. In this paper, we propose a simple but effective Shallow feature-aware Pseudo supervised Object Localization (SPOL) model for accurate WSOL, which makes the utmost of low-level features embedded in shallow layers. In practice, our SPOL model first generates the CAMs through a novel element-wise multiplication of shallow and deep feature maps, which filters the background noise and generates sharper boundaries robustly. Besides, we further propose a general class-agnostic segmentation model to achieve the accurate object mask, by only using the initial CAMs as the pseudo label without any extra annotation. Eventually, a bounding box extractor is applied to the object mask to locate the target. Experiments verify that our SPOL outperforms the state-of-the-art on both CUB-200 and ImageNet-1K benchmarks, achieving 93.44% and 67.15% (i.e., 3.93% and 2.13% improvement) Top-5 localization accuracy, respectively.


翻译:微弱监督对象本地化( WSOL) 旨在通过仅使用图像级标签来将物体本地化。 类激活地图( CAMs) 是用来实现 WSOL 的常用特征。 然而, 先前的 CAM 方法没有充分利用浅色特征, 尽管对 WSOL 很重要 。 由于浅色特征很容易被通过常规聚合而埋在背景噪音中。 在本文中, 我们建议为精确的 WSOL 配置一个简单而有效的浅层显示低度特征的浅色点定位( SPOL) 模型。 在实践中, 我们的 SPOL 模型首先通过浅色和深层特征地图的新型元素增殖生成 CAMs, 以过滤背景噪音并产生更清晰的边界。 此外, 我们进一步提议一个普通类分解模型, 仅使用初始的 CAMs 作假标签, 而不作任何额外的说明。 最后, 对对象面罩应用捆绑框提取器, 以定位目标 。 实验中, 我们的SPOL- k- 3 和 Toper% 的本地化为 和本地化基准 。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
73+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
9+阅读 · 2018年12月19日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
9+阅读 · 2018年12月19日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Top
微信扫码咨询专知VIP会员