Sourav Chatterjee, Persi Diaconis, Allan Sly and Lingfu Zhang, prompted by a question of Ramis Movassagh, renewed the study of a process proposed in the early 1980s by Jean Bourgain. A state vector $v \in \mathbb R^n$, labeled with the vertices of a connected graph, $G$, changes in discrete time steps following the simple rule that at each step a random edge $(i,j)$ is picked and $v_i$ and $v_j$ are both replaced by their average $(v_i+v_j)/2$. It is easy to see that the value associated with each vertex converges to $1/n$. The question was how quickly will $v$ be $\epsilon$-close to uniform in the $L^{1}$ norm in the case of the complete graph, $K_{n}$, when $v$ is initialized as a standard basis vector that takes the value 1 on one coordinate, and zeros everywhere else. They have established a sharp cutoff of $\frac{1}{2\log 2}n\log n + O(n\sqrt{\log n})$. Our main result is to prove, that $\frac{(1-\epsilon)}{2\log2}n\log n-O(n)$ is a general lower bound for all connected graphs on $n$ nodes. We also get sharp magnitude of $t_{\epsilon,1}$ for several important families of graphs, including star, expander, dumbbell, and cycle. In order to establish our results we make several observations about the process, such as the worst case initialization is always a standard basis vector. Our results add to the body of work of Aldous, Aldous and Lanoue, Quattropani and Sau, Cao, Olshevsky and Tsitsiklis, and others. The renewed interest is due to an analogy to a question related to the Google's supremacy circuit. For the proof of our main theorem we employ a concept that we call 'augmented entropy function' which may find independent interest in the computer science and probability theory communities.


翻译:Sourav Chatterjee, Persi Diaconis, Allan Sly 和 Lingfu Zhang, 由Ramis Movassagh 的问题引起, 重新研究了1980年代初Jean Bourgain 提出的一个进程。 州矢量 $v\ in\ mathbbrb Rn$, 标注了连接图形的顶点, $G$, 离散时间步骤的改变, 简单的规则是, 每一步随机边际 $( i, j), 美元 和 美元 美元 和 美元 美元, 都替换了它们的平均 $ (v_i+v_j) 的底端 。 很容易看到每个顶端值的值一致到 1 美元。 问题是如何迅速的 美元 。 美元 美元 美元 和 美元 标准值的调数, 美元, 美元 美元 和 美元 的直系的直系 。

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月30日
Arxiv
0+阅读 · 2022年6月30日
Arxiv
0+阅读 · 2022年6月30日
Arxiv
0+阅读 · 2022年6月30日
Arxiv
0+阅读 · 2022年6月29日
Arxiv
0+阅读 · 2022年6月28日
Arxiv
19+阅读 · 2020年7月13日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
VIP会员
相关VIP内容
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2022年6月30日
Arxiv
0+阅读 · 2022年6月30日
Arxiv
0+阅读 · 2022年6月30日
Arxiv
0+阅读 · 2022年6月30日
Arxiv
0+阅读 · 2022年6月29日
Arxiv
0+阅读 · 2022年6月28日
Arxiv
19+阅读 · 2020年7月13日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员