We introduce LEAP (illustrated in Figure 1), a novel method for generating video-grounded action programs through use of a Large Language Model (LLM). These action programs represent the motoric, perceptual, and structural aspects of action, and consist of sub-actions, pre- and post-conditions, and control flows. LEAP's action programs are centered on egocentric video and employ recent developments in LLMs both as a source for program knowledge and as an aggregator and assessor of multimodal video information. We apply LEAP over a majority (87\%) of the training set of the EPIC Kitchens dataset, and release the resulting action programs as a publicly available dataset here (https://drive.google.com/drive/folders/1Cpkw_TI1IIxXdzor0pOXG3rWJWuKU5Ex?usp=drive_link). We employ LEAP as a secondary source of supervision, using its action programs in a loss term applied to action recognition and anticipation networks. We demonstrate sizable improvements in performance in both tasks due to training with the LEAP dataset. Our method achieves 1st place on the EPIC Kitchens Action Recognition leaderboard as of November 17 among the networks restricted to RGB-input (see Supplementary Materials).
翻译:暂无翻译