Generalized extreme value (GEV) regression is often more adapted when we investigate a relationship between a binary response variable $Y$ which represents a rare event and potentiel predictors $\mathbf{X}$. In particular, we use the quantile function of the GEV distribution as link function. Bootstrapping assigns measures of accuracy (bias, variance, confidence intervals, prediction error, test of hypothesis) to sample estimates. This technique allows estimation of the sampling distribution of almost any statistic using random sampling methods. Bootstrapping estimates the properties of an estimator by measuring those properties when sampling from an approximating distribution. In this paper, we fitted the generalized extreme value regression model, then we performed parametric bootstrap method for testing hupthesis, estimating confidence interval of parameters for generalized extreme value regression model and a real data application.


翻译:当我们调查二进制反应变量Y$(代表罕见事件)和强力预测器$\mathbf{X}$(美元)之间的关系时,一般极端值(GEV)回归往往会更适应。特别是,我们使用GEV分布的四分位函数作为链接函数。启动将精确度(比值、差异、信任间隔、预测错误、假设测试)指定为抽样估计。这种技术可以使用随机抽样方法估计几乎任何统计数据的抽样分布情况。启动在从接近的分布中取样时测量这些属性,从而估算估计估计值的属性。在本文件中,我们安装了普遍极端值回归模型,然后我们进行了参数测算式测重器方法,用于测试湿度、估计普遍极端值回归模型参数的信任期和真实数据应用。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Learning with Noise: Supervised Relation Extraction
开放知识图谱
3+阅读 · 2018年1月4日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
1+阅读 · 2021年6月18日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
专知会员服务
14+阅读 · 2021年5月21日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Learning with Noise: Supervised Relation Extraction
开放知识图谱
3+阅读 · 2018年1月4日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员