In this paper, we propose a novel memory-enabled non-uniform sampling-based bumblebee foraging algorithm (MEB) designed for optimal channel selection in a distributed Vehicular Dynamic Spectrum Access (VDSA) framework employed in a platoon operating environment. Given how bumblebee behavioral models are designed to support adaptation in complex and highly time-varying environments, these models can be employed by connected vehicles to enable their operation within a dynamically changing network topology and support their selection of optimal channels possessing low levels of congestion to achieve high throughput. As a result, the proposed VDSA-based optimal channel selection employs fundamental concepts from the bumblebee foraging model. In the proposed approach, the Channel Busy Ratio (CBR) of all channels is computed and stored in memory to be accessed by the MEB algorithm to make the necessary channel switching decisions. Two averaging techniques, Sliding Window Average (SWA) and Exponentially Weighted Moving Average (EWMA), are employed to leverage past samples and are evaluated against the no-memory case. Due to the high variability of the environment (e.g., high velocities, changing density of vehicles on the road), we propose to calculate the CBR by employing non-uniform channel sampling allocations as well as evaluate it using both simplified numerical and realistic Vehicle-to-Vehicle (V2V) computer simulations. The numerical simulation results show that gains in the probability of the best channel selection can be achieved relative to a uniform sampling allocation approach. By utilizing memory, we observe an additional increase in the channel selection performance. Similarly, we see an increase in the probability of successful reception when utilizing the bumblebee algorithm via a system-level simulator.


翻译:在本文中,我们提出一种新的内存、非统一抽样、基于抽样的大黄蜂增殖算法(MEB),用于在排操作环境中使用的分布式车辆动态光谱访问(VDSA)框架内优化频道选择。鉴于大黄蜂行为模型是如何设计来支持复杂和高度时间变化环境中的适应的,这些模型可以被连接的飞行器用于在动态变化的网络地形中进行操作,并支持它们选择那些拥挤程度较低的最佳渠道,以达到高吞吐量。因此,基于VDSA的最佳频道选择采用了大黄蜂配置模型中的基本概念。在拟议方法中,所有频道的频道繁忙率(CBR)被计算并存储在存储中,以便由MEB算法进行必要的频道转换决定。两种平均技术,即滑动窗口平均值(SWAWMA),可以用来利用过去的样品,并对照不易腐蚀的情况进行评估。由于环境的高度变化(e.g.高速度,所有频道的频道的频道繁忙率率(C.

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2023年1月5日
Arxiv
20+阅读 · 2021年9月22日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员