We investigate the multiplicity model with m values of some test statistic independently drawn from a mixture of no effect (null) and positive effect (alternative), where we seek to identify, the alternative test results with a controlled error rate. We are interested in the case where the alternatives are rare. A number of multiple testing procedures filter the set of ordered p-values in order to eliminate the nulls. Such an approach can only work if the p-values originating from the alternatives form one or several identifiable clusters. The Benjamini and Hochberg (BH) method, for example, assumes that this cluster occurs in a small interval $(0,\Delta)$ and filters out all or most of the ordered p-values $p_{(r)}$ above a linear threshold $s \times r$. In repeated applications this filter controls the false discovery rate via the slope s. We propose a new adaptive filter that deletes the p-values from regions of uniform distribution. In cases where a single cluster remains, the p-values in an interval are declared alternatives, with the mid-point and the length of the interval chosen by controlling the data-dependent FDR at a desired level.
翻译:暂无翻译