Latency-critical computer vision systems, such as autonomous driving or drone control, require fast image or video compression when offloading neural network inference to a remote computer. To ensure low latency on a near-sensor edge device, we propose the use of lightweight encoders with constant bitrate and pruned encoding configurations, namely, ASTC and JPEG XS. Pruning introduces significant distortion which we show can be recovered by retraining the neural network with compressed data after decompression. Such an approach does not modify the network architecture or require coding format modifications. By retraining with compressed datasets, we reduced the classification accuracy and segmentation mean intersection over union (mIoU) degradation due to ASTC compression to 4.9-5.0 percentage points (pp) and 4.4-4.0 pp, respectively. With the same method, the mIoU lost due to JPEG XS compression at the main profile was restored to 2.7-2.3 pp. In terms of encoding speed, our ASTC encoder implementation is 2.3x faster than JPEG. Even though the JPEG XS reference encoder requires optimizations to reach low latency, we showed that disabling significance flag coding saves 22-23% of encoding time at the cost of 0.4-0.3 mIoU after retraining.


翻译:自动驾驶或无人驾驶控制等关键计算机视觉系统在卸载神经网络引力到远程计算机时,需要快速图像或视频压缩。为确保近传感器边缘装置的低延迟性,我们提议使用固定比特率和修剪编码配置的轻重量编码器,即ASTC和JPEG XS。 Pruning 引入了我们所显示的通过在降压后用压缩数据对神经网络进行压缩数据再培训而可以恢复的重大扭曲。这种方法并不改变网络结构,也不要求对格式进行编码修改。通过使用压缩数据集进行再培训,我们降低了分类准确性和分解意味着结合(MIOU)的交叉度。由于 ASTC压缩到4.9-5.0个百分点(pp)和4.4-4.0 pp,我们建议使用STC 压缩到4.9-5.0个百分点(pp)的轻重量编码编码器。同样的方法,我们所显示,由于主剖面的JEG XS压缩工作而损失的 mIU值恢复为2.7-2.3 pp. 。就编码速度而言,我们的ASTC编码实施速度比JPEGEG更快。即使JEX参考X值的编码参考要求在22 升降压后需要重度达到22的重度后最重度后,但显示的校正的校正的校正的校正的校正值值值为10。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月26日
Arxiv
1+阅读 · 2023年1月25日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员