Transfer function (TF) plays a key role for the generation of direct volume rendering (DVR), by enabling accurate identification of structures of interest (SOIs) interactively as well as ensuring appropriate visibility of them. Attempts at mitigating the repetitive manual process of TF design have led to approaches that make use of a knowledge database consisting of pre-designed TFs by domain experts. In these approaches, a user navigates the knowledge database to find the most suitable pre-designed TF for their input volume to visualize the SOIs. Although these approaches potentially reduce the workload to generate the TFs, they, however, require manual TF navigation of the knowledge database, as well as the likely fine tuning of the selected TF to suit the input. In this work, we propose a TF design approach where we introduce a new content-based retrieval (CBR) to automatically navigate the knowledge database. Instead of pre-designed TFs, our knowledge database contains image volumes with SOI labels. Given an input image volume, our CBR approach retrieves relevant image volumes (with SOI labels) from the knowledge database; the retrieved labels are then used to generate and optimize TFs of the input. This approach does not need any manual TF navigation and fine tuning. For improving SOI retrieval performance, we propose a two-stage CBR scheme to enable the use of local intensity and regional deep image feature representations in a complementary manner. We demonstrate the capabilities of our approach with comparison to a conventional CBR approach in visualization, where an intensity profile matching algorithm is used, and also with potential use-cases in medical image volume visualization where DVR plays an indispensable role for different clinical usages.
翻译:传输功能 (TF) 通过精确地识别感兴趣的结构(SOIs), 并确保其适当的可见度, 从而在生成直接的量成像(DVR) 方面发挥着关键作用。 试图减少TF设计的重复手动过程,导致采用由域专家预先设计的TF组成的知识数据库的方法。 在这些方法中, 用户浏览知识数据库, 寻找最合适的预设计的TF, 以图示SOI的输入量。 虽然这些方法有可能减少生成TF的工作量, 但是它们需要对知识数据库进行手工的TF导航, 以及可能需要对选定的TF进行精细的调整以适应输入。 在这项工作中, 我们提出了TFTF设计方法, 使用基于内容的新检索(CBR) 来自动浏览知识数据库。 在预先设计的TFTF中, 我们的知识数据库中含有带有SOI标签的图像量。 在输入图像量上, 我们的CBR方法从知识数据库中检索相关的图像量(SOI 标签); 检索的标签可以使用Slibalalalalal dalbalation 方法, 在SBI 中, 使用一种Salview 和最佳的SBI 格式中, 。