In this paper, we develop a new neural network family based on power series expansion, which is proved to achieve a better approximation accuracy in comparison with existing neural networks. This new set of neural networks embeds the power series expansion (PSE) into the neural network structure. Then it can improve the representation ability while preserving comparable computational cost by increasing the degree of PSE instead of increasing the depth or width. Both theoretical approximation and numerical results show the advantages of this new neural network.
翻译:在本文中,我们开发了一个新的基于电力序列扩展的神经网络大家庭,这证明与现有的神经网络相比,可以实现更好的近似准确性。这组新的神经网络将电力序列扩展嵌入神经网络结构。然后它可以通过提高PSE的深度而不是扩大深度或宽度来提高可比较的计算成本,从而提高代表能力,同时保持可比的计算成本。理论近似和数字结果都显示了这一新神经网络的优势。