Since many safety-critical systems, such as surgical robots and autonomous driving cars operate in unstable environments with sensor noise and incomplete data, it is desirable for object detectors to take the localization uncertainty into account. However, there are several limitations of the existing uncertainty estimation methods for anchor-based object detection. 1) They model the uncertainty of the heterogeneous object properties with different characteristics and scales, such as location (center point) and scale (width, height), which could be difficult to estimate. 2) They model box offsets as Gaussian distributions, which is not compatible with the ground truth bounding boxes that follow the Dirac delta distribution. 3) Since anchor-based methods are sensitive to anchor hyperparameters, the localization uncertainty for them could be also highly sensitive to the choice of hyperparameters as well. To tackle these limitations, we propose a new localization uncertainty estimation method called UAD for anchor-free object detection. Our method captures the uncertainty in four directions of box offsets~(left, right, top, bottom) that are homogeneous, so that it can tell which direction is uncertain, and provides a quantitative value of uncertainty in $[0, 1]$. To enable such uncertainty estimation, we design a new uncertainty loss, negative power log-likelihood loss, to measure the localization uncertainty by weighting the likelihood loss by its IoU, which alleviates the model misspecification problem. Furthermore, we propose an uncertainty-aware focal loss for reflecting the estimated uncertainty to the classification score. Experimental results on COCO datasets demonstrate that our method significantly improves FCOS, by up to 1.8 points, without sacrificing computational efficiency.


翻译:由于许多安全临界系统,如外科机器人和自主驾驶汽车在传感器噪音和数据不完整的不稳定环境中运作,因此,物体探测器最好将本地化不确定因素考虑在内;然而,现有基于锚的物体探测的不确定性估算方法有若干局限性。 1)它们模拟具有不同特点和尺度的混杂物体属性的不确定性,例如位置(中点)和规模(宽度、高度),这可能难以估计。 2)它们以高斯分布为模型,与Dirac 三角洲分布之后的地面真相约束框不兼容。 3)由于基于锚基方法对固定超分计十分敏感,因此,这些物体的本地化不确定因素对于选择超参数也可能是高度敏感的。为了应对这些限制,我们提出了一种新的本地化不确定性估算方法,即UAD为无锚物体探测(宽度、高度、高度、高度),我们的方法在四个方向上方均匀取不确定性,因此它可以辨明方向是不确定的,并且提供了量化的不确定性值,在ASLO 1 中,我们能够通过降低本地的不确定性,从而显示其精确度估算结果的数值的数值值。

0
下载
关闭预览

相关内容

专知会员服务
21+阅读 · 2021年7月28日
专知会员服务
109+阅读 · 2020年3月12日
目标检测:Anchor-Free时代
极市平台
42+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
专知会员服务
21+阅读 · 2021年7月28日
专知会员服务
109+阅读 · 2020年3月12日
Top
微信扫码咨询专知VIP会员