Typical Bayesian approaches to OOD detection use epistemic uncertainty. Surprisingly from the Bayesian perspective, there are a number of methods that successfully use aleatoric uncertainty to detect OOD points (e.g. Hendryks et al. 2018). In addition, it is difficult to use outlier exposure to improve a Bayesian OOD detection model, as it is not clear whether it is possible or desirable to increase posterior (epistemic) uncertainty at outlier points. We show that a generative model of data curation provides a principled account of aleatoric uncertainty for OOD detection. In particular, aleatoric uncertainty signals a specific type of OOD point: one without a well-defined class-label, and our model of data curation gives a likelihood for these points, giving us a mechanism for conditioning on outlier points and thus performing principled Bayesian outlier exposure. Our principled Bayesian approach, combining aleatoric and epistemic uncertainty with outlier exposure performs better than methods using aleatoric or epistemic alone.


翻译:典型的Bayesian OOD探测方法使用隐性不确定性。从Bayesian的角度来看,令人惊讶的是,有一些方法成功地使用偏移性不确定性来探测OOD点(例如Hendryks等人,2018年)。此外,很难利用外部暴露来改进Bayesian OOD检测模型,因为不清楚在外围点增加后端(范围)不确定性的可能性或可取性。我们表明,数据归正性模型为OOD检测提供了有原则的偏移性不确定性说明。特别是,偏移性不确定性表明一种特定的OOOD点类型:一种没有明确界定的分类标签,而我们的数据归正模型为这些点提供了可能性,为我们提供了一个调节外端点的机制,从而可以进行有原则的Bayesian外部暴露。我们有原则的Bayesian方法,将偏移和感知性不确定性与外部暴露结合,比仅使用显性或传感性的方法要好得多。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
浅谈贝叶斯和MCMC
AI100
14+阅读 · 2018年6月11日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月29日
Arxiv
8+阅读 · 2021年7月15日
Arxiv
30+阅读 · 2021年7月7日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
浅谈贝叶斯和MCMC
AI100
14+阅读 · 2018年6月11日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员