Typical Bayesian approaches to OOD detection use epistemic uncertainty. Surprisingly from the Bayesian perspective, there are a number of methods that successfully use aleatoric uncertainty to detect OOD points (e.g. Hendryks et al. 2018). In addition, it is difficult to use outlier exposure to improve a Bayesian OOD detection model, as it is not clear whether it is possible or desirable to increase posterior (epistemic) uncertainty at outlier points. We show that a generative model of data curation provides a principled account of aleatoric uncertainty for OOD detection. In particular, aleatoric uncertainty signals a specific type of OOD point: one without a well-defined class-label, and our model of data curation gives a likelihood for these points, giving us a mechanism for conditioning on outlier points and thus performing principled Bayesian outlier exposure. Our principled Bayesian approach, combining aleatoric and epistemic uncertainty with outlier exposure performs better than methods using aleatoric or epistemic alone.
翻译:典型的Bayesian OOD探测方法使用隐性不确定性。从Bayesian的角度来看,令人惊讶的是,有一些方法成功地使用偏移性不确定性来探测OOD点(例如Hendryks等人,2018年)。此外,很难利用外部暴露来改进Bayesian OOD检测模型,因为不清楚在外围点增加后端(范围)不确定性的可能性或可取性。我们表明,数据归正性模型为OOD检测提供了有原则的偏移性不确定性说明。特别是,偏移性不确定性表明一种特定的OOOD点类型:一种没有明确界定的分类标签,而我们的数据归正模型为这些点提供了可能性,为我们提供了一个调节外端点的机制,从而可以进行有原则的Bayesian外部暴露。我们有原则的Bayesian方法,将偏移和感知性不确定性与外部暴露结合,比仅使用显性或传感性的方法要好得多。