Understanding when and why interpolating methods generalize well has recently been a topic of interest in statistical learning theory. However, systematically connecting interpolating methods to achievable notions of optimality has only received partial attention. In this paper, we investigate the question of what is the optimal way to interpolate in linear regression using functions that are linear in the response variable (as the case for the Bayes optimal estimator in ridge regression) and depend on the data, the population covariance of the data, the signal-to-noise ratio and the covariance of the prior for the signal, but do not depend on the value of the signal itself nor the noise vector in the training data. We provide a closed-form expression for the interpolator that achieves this notion of optimality and show that it can be derived as the limit of preconditioned gradient descent with a specific initialization. We identify a regime where the minimum-norm interpolator provably generalizes arbitrarily worse than the optimal response-linear achievable interpolator that we introduce, and validate with numerical experiments that the notion of optimality we consider can be achieved by interpolating methods that only use the training data as input in the case of an isotropic prior. Finally, we extend the notion of optimal response-linear interpolation to random features regression under a linear data-generating model that has been previously studied in the literature.


翻译:在本文中,我们研究了利用反应变数中线性回归函数(如Bayes最佳估测器在山脊回归中的情况)和取决于数据、数据的人口差异、信号对噪音比率和信号前方的变异性,但并不取决于信号本身的价值,也不取决于培训数据中的噪声矢量。我们为实现这一优化概念的内推者提供了一个封闭式表达方式,并表明它可以被推导为以特定初始化为前提的梯度下降限度。我们确定了一种制度,即最小北向间推器将模型任意地比最佳反应-线性内推器更差,我们采用的是最佳反应-线性内推器,并用数字实验证实我们认为最佳性文献的概念在培训中可以实现,在前期的线性回归模型中,我们所考虑的最佳性文献只能通过先期输入式数据模型,我们最后阶段的线性分析中,只有先期输入式数据,我们最后阶段的模拟数据才能被分析。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
专知会员服务
61+阅读 · 2020年3月4日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员