We introduce the notion of an $r$-visit of a Directed Acyclic Graph DAG $G=(V,E)$, a sequence of the vertices of the DAG complying with a given rule $r$. A rule $r$ specifies for each vertex $v\in V$ a family of $r$-enabling sets of (immediate) predecessors: before visiting $v$, at least one of its enabling sets must have been visited. Special cases are the $r^{(top)}$-rule (or, topological rule), for which the only enabling set is the set of all predecessors and the $r^{(sin)}$-rule (or, singleton rule), for which the enabling sets are the singletons containing exactly one predecessor. The $r$-boundary complexity of a DAG $G$, $b_{r}\left(G\right)$, is the minimum integer $b$ such that there is an $r$-visit where, at each stage, for at most $b$ of the vertices yet to be visited an enabling set has already been visited. By a reformulation of known results, it is shown that the boundary complexity of a DAG $G$ is a lower bound to the pebbling number of the reverse DAG, $G^R$. Several known pebbling lower bounds can be cast in terms of the $r^{(sin)}$-boundary complexity. A visit partition technique for I/O lower bounds, which generalizes the $S$-partition I/O technique introduced by Hong and Kung in their classic paper "I/O complexity: The Red-Blue pebble game". The visit partition approach yields tight I/O bounds for some DAGs for which the $S$-partition technique can only yield an $\Omega(1)$ lower bound.
翻译:我们引入了“美元访问”的概念, 即“ 直接自行车图 DAG $G=( V, E) $( V) ” 。 这是DAG按照给定规则执行的“ 美元” 规则( 美元) 。 一条规则( 美元) 为每个“ 美元” ( V) 指定了“ 美元” ( V) 美元 。 在访问$( 立即) 之前, 必须访问其中至少一个辅助组。 特殊情况是“ 美元( 顶) 美元” 规则( 或“ 结构规则 ” ), 其中唯一一套“ 复杂性” 是所有前任和“ 美元” ( 美元) ( 美元) 美元) 规则( 美元) 。 规则( 美元) ( 美元) 规则( 美元) 。 规则( ) 规则( 美元) 。 规则( 美元) 规则( ) ( 美元) ( 美元) ( ) ( 美元) ( ) ( 美元) ( 规则 ( ) ( 美元) ( ) ( 美元) ( 美元) ( 美元) ( 规则) ( ) ( 美元) ( 美元) ( ) ( ) ( ) ( ) ( 规则) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 美元) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (