The two most important algorithms in artificial intelligence are backpropagation and belief propagation. In spite of their importance, the connection between them is poorly characterized. We show that when an input to backpropagation is converted into an input to belief propagation so that (loopy) belief propagation can be run on it, then the result of belief propagation encodes the result of backpropagation; thus backpropagation is recovered as a special case of belief propagation. In other words, we prove for apparently the first time that belief propagation generalizes backpropagation. Our analysis is a theoretical contribution, which we motivate with the expectation that it might reconcile our understandings of each of these algorithms, and serve as a guide to engineering researchers seeking to improve the behavior of systems that use one or the other.
翻译:人工智能中最重要的两种算法是反向传播和信仰传播。 尽管这两个算法很重要, 它们的关联性很低。 我们显示, 当对反向传播的输入转换成对信仰传播的输入, 这样( 粗略的)信仰传播就可以在它上运行, 那么信仰传播的结果会将反向传播的结果编码; 因此后向传播会被恢复为信仰传播的特殊案例。 换句话说, 我们显然第一次证明信仰传播会普遍化反向。 我们的分析是一种理论贡献, 我们的动力在于期望它能调和我们对每一种算法的理解, 并成为工程研究人员的指南, 目的是改善使用一种或另一种算法的系统的行为。