The authors transpose a discrete notion of indetermination coupling in the case of continuous probabilities. They show that this coupling, expressed on densities, cannot be captured by a specific copula which acts on cumulative distribution functions without a high dependence on the margins. Furthermore, they define a notion of average likelihood which extends the discrete notion of couple matchings and demonstrate it is minimal under indetermination. Eventually, they leverage this property to build up a statistical test to distinguish indetermination and estimate its efficiency using the Bahadur's slope.
翻译:在连续概率的情况下,作者们转换了一种分离的确定组合概念,它们表明,以密度表示的这种组合不能被一个在不高度依赖边际的情况下按累积分配功能作用作用而作用的特定千叶截抓住,此外,他们界定了一种平均可能性概念,它扩大了分离的对等概念,并表明在确定时这种对等概念是最小的。最后,他们利用这一财产来建立统计测试,以便用巴哈杜尔的斜坡来区分确定和估计其效率。