We investigate deterministic non-preemptive online scheduling with delayed commitment for total completion time minimization on parallel identical machines. In this problem, jobs arrive one-by-one and their processing times are revealed upon arrival. An online algorithm can assign a job to a machine at any time after its arrival. We neither allow preemption nor a restart of the job, that is, once started, the job occupies the assigned machine until its completion. Our objective is the minimization of the sum of the completion times of all jobs. In the more general weighted version of the problem, we multiply the completion time of a job by the individual weight of the job. We apply competitive analysis to evaluate our algorithms. We improve 25-year-old lower bounds for the competitive ratio of this problem by optimizing a simple job pattern. These lower bounds decrease with growing numbers of machines. Based on the job pattern, we develop an online algorithm which is an extension of the delayed-SPT (Shortest Processing Time first) approach to the parallel machine environment. We show that the competitive ratio is at most 1.546 for any even machine number which is a significant improvement over the best previously known competitive ratio of 1.791. For the two-machine environment, this algorithm achieves a tight competitive ratio. This is the first algorithm which optimally solves an online total completion time problem in a parallel machine environment. Finally, we give the first separation between the weighted and unweighted versions of the problem by showing that in the two-machine environment, the competitive ratio of the weighted completion time objective is strictly larger than 1.546.


翻译:我们调查的是确定性的非先发制人的在线日程安排,在平行的相同机器上延迟承诺全面完成时间最小化。 在这一问题中,工作一一抵达,其处理时间在到达后立即公布。 在线算法可以在机器到达后任何时候将工作分配给机器。 我们既不允许预先放弃,也不允许重新开始工作,也就是说,一旦工作开始,该工作在机器完成之前一直占据着它。 我们的目标是最大限度地减少所有工作的完成时间的总和。 在问题的总体加权版本中,我们把工作的完成时间按工作的个人重量乘以每个工作重量。 我们应用竞争性分析来评估我们的算法。 我们通过优化一个简单的工作模式来改进25年前的竞争性比率。 这些较低的界限随着机器数量的增长而减少。 根据工作模式,我们开发了一个在线算法,这是将延迟处理时间最短的时间方法(先处理时间最短的时间)扩大到平行的机器环境。 我们显示,任何机器数目的完成时间都最多只有1.546的比重时间,这比目前最接近的竞争比率要大大改进。 我们通过一个已知的1791年的竞争性算法最终的完成率环境,这是我们最接近于一个最接近于1791年的双级的完成周期。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月9日
Arxiv
0+阅读 · 2022年9月8日
Arxiv
0+阅读 · 2022年9月8日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员