As the pre-trained language models (PLMs) continue to grow, so do the hardware and data requirements for fine-tuning PLMs. Therefore, the researchers have come up with a lighter method called \textit{Prompt Learning}. However, during the investigations, we observe that the prompt learning methods are vulnerable and can easily be attacked by some illegally constructed prompts, resulting in classification errors, and serious security problems for PLMs. Most of the current research ignores the security issue of prompt-based methods. Therefore, in this paper, we propose a malicious prompt template construction method (\textbf{PromptAttack}) to probe the security performance of PLMs. Several unfriendly template construction approaches are investigated to guide the model to misclassify the task. Extensive experiments on three datasets and three PLMs prove the effectiveness of our proposed approach PromptAttack. We also conduct experiments to verify that our method is applicable in few-shot scenarios.
翻译:随着预先培训的语言模式(PLM)继续增长,微调PLM的硬件和数据要求也继续增长。因此,研究人员提出了一种叫作\ textit{Prompt Learning}的较轻方法。然而,在调查期间,我们注意到,迅速学习的方法很脆弱,很容易受到一些非法制造的提示的攻击,导致分类错误,以及PLMS的严重安全问题。目前的大部分研究忽视了基于即时方法的安全问题。因此,我们在本文件中提出了一种恶意的即时模板构建方法(\ textbf{PromptAttack}),以探究PLMS的安全性能。对几种不友好的模板构建方法进行了调查,以引导对任务进行分类的模型。对三个数据集和三个PLMS进行了广泛的实验,证明了我们提议的TrantAttack方法的有效性。我们还进行了实验,以核实我们的方法适用于几场情景。