The heavy-tailed mutation operator proposed in Doerr, Le, Makhmara, and Nguyen (GECCO 2017), called \emph{fast mutation} to agree with the previously used language, so far was proven to be advantageous only in mutation-based algorithms. There, it can relieve the algorithm designer from finding the optimal mutation rate and nevertheless obtain a performance close to the one that the optimal mutation rate gives. In this first runtime analysis of a crossover-based algorithm using a heavy-tailed choice of the mutation rate, we show an even stronger impact. For the $(1+(\lambda,\lambda))$ genetic algorithm optimizing the OneMax benchmark function, we show that with a heavy-tailed mutation rate a linear runtime can be achieved. This is asymptotically faster than what can be obtained with any static mutation rate, and is asymptotically equivalent to the runtime of the self-adjusting version of the parameters choice of the $(1+(\lambda,\lambda))$ genetic algorithm. This result is complemented by an empirical study which shows the effectiveness of the fast mutation also on random satisfiable Max-3SAT instances.
翻译:在Doerr、Le、Makhmara和Nguyen(GECCO 2017)中提议的重尾突变操作器(GECCO 2017)被称作 emph{fast traphon}(GECCO 2017),以与先前使用的语言取得一致,迄今为止,事实证明只有突变法算法才具有优势。在那里,它可以使算法设计者免于找到最佳突变率,而取得接近于最佳突变率所带来效果的功能。在首次运行时,使用重尾选择突变率的跨超轨算法分析中,我们显示出更强大的影响。对于优化 OneMax 基准函数的$(1+(\lambda,\lambda)) $($($+(\lambda,\lambda)) ) 的基因算法效果,我们证明,如果采用重尾突变速率,直线运行时间可以实现。这比任何静变速率都快得多,而且与自我调整版参数选择 $(1+\\lambda,lambda) as sat salalalevainalxevactaxevalxax 的结果也以快速进行。