The view inconsistency problem in score-distilling text-to-3D generation, also known as the Janus problem, arises from the intrinsic bias of 2D diffusion models, which leads to the unrealistic generation of 3D objects. In this work, we explore score-distilling text-to-3D generation and identify the main causes of the Janus problem. Based on these findings, we propose two approaches to debias the score-distillation frameworks for robust text-to-3D generation. Our first approach, called score debiasing, involves gradually increasing the truncation value for the score estimated by 2D diffusion models throughout the optimization process. Our second approach, called prompt debiasing, identifies conflicting words between user prompts and view prompts utilizing a language model and adjusts the discrepancy between view prompts and object-space camera poses. Our experimental results show that our methods improve realism by significantly reducing artifacts and achieve a good trade-off between faithfulness to the 2D diffusion models and 3D consistency with little overhead.
翻译:细胞内分子交互作用是传导细胞信息的基本过程。 在生物学中,蛋白质互作网络是研究这些相互作用的主要手段。 在这个工作中,我们提出了一种新的方法,可以将蛋白质互作网络映射到超图结构中,以捕获各种不同规模的复杂蛋白质互作模式。我们的模型称为HyperPPI,它是一个标准蛋白质互作网络的扩展,允许映射多对多蛋白质间的关系。 该方法快速有效,能够更好地捕捉常见的拓扑特征,并将小规模蛋白质互作模式嵌入到超图中,从而获得更准确的洞察力。我们对多个真实数据集进行了实验评估,表明HyperPPI在保留更多信息的同时保持与原始网络相同的蛋白质预测性能。