Intrinsic Gaussian Markov Random Fields (IGMRFs) can be used to induce conditional dependence in Bayesian hierarchical models. IGMRFs have both a precision matrix, which defines the neighbourhood structure of the model, and a precision, or scaling, parameter. Previous studies have shown the importance of selecting this scaling parameter appropriately for different types of IGMRF, as it can have a substantial impact on posterior results. Here, we focus on the two-dimensional case, where tuning of the parameter is achieved by mapping it to the marginal standard deviation of a two-dimensional IGMRF. We compare the effects of scaling various classes of IGMRF, including an application to blood pressure data using MCMC methods.


翻译:Intrinsic Gaussian Markov Random Fields(IGMRFs) 可用于诱导巴伊西亚等级模型的有条件依赖性。 IGMRFs 既有一个精确矩阵,界定模型的邻里结构,又有一个精确度或缩放参数。以前的研究表明,为不同类型IGMRF适当选择这一缩放参数的重要性,因为它可能对后方结果产生重大影响。这里,我们侧重于二维案例,通过对参数进行绘图,使其与二维IGMRF的边缘标准偏差相匹配,从而实现参数调控。我们比较了将各种类型IGMRF的缩放效应,包括使用MCM方法将血压数据应用到血压数据中。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【经典书】信息论原理,774页pdf
专知会员服务
255+阅读 · 2021年3月22日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习速查手册,135页pdf
专知会员服务
340+阅读 · 2020年3月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年1月31日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员