Anglican is a probabilistic programming system designed to interoperate with Clojure and other JVM languages. We introduce the programming language Anglican, outline our design choices, and discuss in depth the implementation of the Anglican language and runtime, including macro-based compilation, extended CPS-based evaluation model, and functional representations for probabilistic paradigms, such as a distribution, a random process, and an inference algorithm. We show that a probabilistic functional language can be implemented efficiently and integrated tightly with a conventional functional language with only moderate computational overhead. We also demonstrate how advanced probabilistic modeling concepts are mapped naturally to the functional foundation.


翻译:英国圣公会是一个概率性编程系统,旨在与克洛日尔和其他JVM语言进行互动。我们引入了编程语言英国圣公会,概述了我们的设计选择,深入讨论了英国圣公会语言的实施和运行时间,包括宏观汇编、扩展的CPS评价模式,以及概率性模式(如分布、随机过程和推论算法)的功能代表。我们表明,可以高效地使用概率性功能性语言,并与常规功能性语言紧密结合,只有中等的计算间接费用。我们还展示了如何将先进的概率模型概念自然地映射到功能基础。

0
下载
关闭预览

相关内容

【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Visualizing and Measuring the Geometry of BERT
Arxiv
7+阅读 · 2019年10月28日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
VIP会员
相关VIP内容
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员