In this paper, we present a conforming discontinuous Galerkin (CDG) finite element method for Brinkman equations. The velocity stabilizer is removed by employing the higher degree polynomials to compute the weak gradient. The theoretical analysis shows that the CDG method is actually stable and accurate for the Brinkman equations. Optimal order error estimates are established in $H^1$ and $L^2$ norm. Finally, numerical experiments verify the stability and accuracy of the CDG numerical scheme.


翻译:在本文中,我们提出了一种符合不连续Galerkin(CDG)有限元方法来解决布林克曼方程。通过利用高阶多项式计算弱梯度来去除速度稳定器。理论分析表明,CDG方法对于布林克曼方程实际上是稳定和准确的。在$H^1$和$L^2$范数下建立了最佳的误差估计。最后,数值实验验证了CDG数值方案的稳定性和准确性。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
《常微分方程》笔记,419页pdf
专知会员服务
76+阅读 · 2020年8月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员