In this paper, we present a conforming discontinuous Galerkin (CDG) finite element method for Brinkman equations. The velocity stabilizer is removed by employing the higher degree polynomials to compute the weak gradient. The theoretical analysis shows that the CDG method is actually stable and accurate for the Brinkman equations. Optimal order error estimates are established in $H^1$ and $L^2$ norm. Finally, numerical experiments verify the stability and accuracy of the CDG numerical scheme.
翻译:在本文中,我们提出了一种符合不连续Galerkin(CDG)有限元方法来解决布林克曼方程。通过利用高阶多项式计算弱梯度来去除速度稳定器。理论分析表明,CDG方法对于布林克曼方程实际上是稳定和准确的。在$H^1$和$L^2$范数下建立了最佳的误差估计。最后,数值实验验证了CDG数值方案的稳定性和准确性。