In this paper we propose a new sampling-free approach to solve Bayesian model inversion problems that is an extension of the previously proposed spectral likelihood expansions (SLE) method. Our approach, called stochastic spectral likelihood embedding (SSLE), uses the recently presented stochastic spectral embedding (SSE) method for local spectral expansion refinement to approximate the likelihood function at the core of Bayesian inversion problems. We show that, similar to SLE, this approach results in analytical expressions for key statistics of the Bayesian posterior distribution, such as evidence, posterior moments and posterior marginals, by direct post-processing of the expansion coefficients. Because SSLE and SSE rely on the direct approximation of the likelihood function, they are in a way independent of the computational/mathematical complexity of the forward model. We further enhance the efficiency of SSLE by introducing a likelihood specific adaptive sample enrichment scheme. To showcase the performance of the proposed SSLE, we solve three problems that exhibit different kinds of complexity in the likelihood function: multimodality, high posterior concentration and high nominal dimensionality. We demonstrate how SSLE significantly improves on SLE, and present it as a promising alternative to existing inversion frameworks.


翻译:在本文中,我们提出了一种新的无取样方法,以解决巴伊西亚模式的反向问题,这是以前提议的光概率扩展法(SLE)的延伸。我们的方法,即所谓的随机光谱可能性嵌入(SSLE),使用最近推出的当地光谱扩展改进的随机光谱嵌入(SSE)法,以近似巴伊斯反向问题核心部分的可能功能。我们表明,与SLE相似,这个方法在分析巴伊西亚后子片分布的主要统计数据的关键统计数据中,如证据、后光偶和后发系数直接处理后,扩大了先前提议的光谱概率扩展概率扩展法(SLE)的延伸方法。我们的方法是使用最近推出的当地光谱扩展法的随机光谱嵌入法(SSSSSSE)方法,以近似可能性函数直接近近近的SSSL和SSSSSSSS,它们独立于远模型的计算/数学复杂性。我们进一步通过引入可能的具体适应性抽样浓缩计划来提高SSLE的效率。为了展示拟议的SSLLL的绩效,我们解决了三个问题,这三个问题,这些问题在可能性功能中表现出不同复杂程度的概率功能:多式联运、高后高后高后浓度和高额和高额版本框架,我们如何,我们如何改进SLISSS。我们如何改进现有SS。

0
下载
关闭预览

相关内容

专知会员服务
75+阅读 · 2021年5月11日
【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
42+阅读 · 2021年4月7日
专知会员服务
85+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
tf.GradientTape 详解
TensorFlow
120+阅读 · 2020年2月21日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
浅谈贝叶斯和MCMC
AI100
14+阅读 · 2018年6月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Multilevel Spectral Domain Decomposition
Arxiv
0+阅读 · 2021年6月11日
Arxiv
0+阅读 · 2021年6月11日
Arxiv
0+阅读 · 2021年6月11日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关VIP内容
相关资讯
tf.GradientTape 详解
TensorFlow
120+阅读 · 2020年2月21日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
浅谈贝叶斯和MCMC
AI100
14+阅读 · 2018年6月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员