Recently Bramoulle and Kranton presented a model for the provision of public goods over a network and showed the existence of a class of Nash equilibria called specialized equilibria wherein some agents exert maximum effort while other agents free ride. We examine the efficiency, effort and cost of specialized equilibria in comparison to other equilibria. Our main results show that the welfare of a particular specialized equilibrium approaches the maximum welfare amongst all equilibria as the concavity of the benefit function tends to unity. For forest networks a similar result also holds as the concavity approaches zero. Moreover, without any such concavity conditions, there exists for any network a specialized equilibrium that requires the maximum weighted effort amongst all equilibria. When the network is a forest, a specialized equilibrium also incurs the minimum total cost amongst all equilibria. For well-covered forest networks we show that all welfare maximizing equilibria are specialized and all equilibria incur the same total cost. Thus we argue that specialized equilibria may be considered as a refinement of the equilibrium of the public goods game. We show several results on the structure and efficiency of equilibria that highlight the role of dependants in the network.
翻译:最近Bramoulle和Kranton提出了在网络上提供公共货物的模式,并表明存在着被称为专门平衡的一类纳什平衡,其中某些代理人尽最大努力,而其他代理人则自由搭乘。我们考察了专门平衡与其他平衡相比的效率、努力和成本。我们的主要结果显示,特定专门平衡的好处接近于所有平衡的最大福利,因为利益功能的调和往往趋于一致。对于森林网络来说,类似的结果也与调和方法一样零。此外,在没有任何这种调和条件的情况下,任何网络都存在一种专门平衡,要求所有代理人作出最大加权努力。当网络是森林时,专门平衡也给所有平衡带来最低的总成本。对于覆盖良好的森林网络,我们表明所有福利最大化的调和功能都是专门性的,所有平衡都会产生同样的总成本。因此,我们认为,专门平衡可以被视为公共货物平衡的平衡,要求所有均衡之间作出最大的加权努力。当网络是森林的时候,专门平衡也意味着所有平衡结构中的若干结果。我们展示了平衡性结构中的各种结果。