Optical flow estimation is a classical yet challenging task in computer vision. One of the essential factors in accurately predicting optical flow is to alleviate occlusions between frames. However, it is still a thorny problem for current top-performing optical flow estimation methods due to insufficient local evidence to model occluded areas. In this paper, we propose Super Kernel Flow Network (SKFlow), a CNN architecture to ameliorate the impacts of occlusions on optical flow estimation. SKFlow benefits from the super kernels which bring enlarged receptive fields to complement the absent matching information and recover the occluded motions. We present efficient super kernel designs by utilizing conical connections and hybrid depth-wise convolutions. Extensive experiments demonstrate the effectiveness of SKFlow on multiple benchmarks, especially in the occluded areas. Without pre-trained backbones on ImageNet and with modest increase in computation, SKFlow achieves compelling performance and ranks $\textbf{1st}$ among current published methods on Sintel benchmark. On the challenging Sintel final pass test set, SKFlow attains the average end-point error of $2.23$, which surpasses the best published result $2.47$ by $9.72\%$.
翻译:光学流动估计是计算机视觉中一项传统但具有挑战性的任务。准确预测光学流动的关键因素之一是减轻框架之间的隔阂。然而,由于当地对隐蔽区域模型的证据不足,目前最佳光学流动估计方法仍是一个棘手的问题。在本文中,我们提议建立超级内核流动网络(SKFlow),这是一个有线电视新闻网架构,以缓解光学流动估计的封闭性影响。超级内核带来了扩大的可容纳域,以补充缺失的匹配信息,并恢复隐蔽的动作。我们通过使用锥形连接和混合深度共振,提出了高效的超级内核设计。广泛的实验表明SKFlow在多个基准上的有效性,特别是在隐蔽区域。在图像网络上没有经过预先训练的骨架,而且计算也略有增加,SKFlow实现了令人信服的性能,并将美元\ textbf{1st}作为Sintel目前公布的基准方法中排名。在挑战性Sintel最后通过测试集时,我们展示了高效的超级内核设计。SKFlow $ 达到9.47美元的平均端值,这是所公布的9.47美元。