(This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.) To improve the efficiency of deep reinforcement learning (DRL)-based methods for robot manipulator trajectory planning in random working environments, we present three dense reward functions. These rewards differ from the traditional sparse reward. First, a posture reward function is proposed to speed up the learning process with a more reasonable trajectory by modeling the distance and direction constraints, which can reduce the blindness of exploration. Second, a stride reward function is proposed to improve the stability of the learning process by modeling the distance and movement distance of joint constraints. Finally, in order to further improve learning efficiency, we are inspired by the cognitive process of human behavior and propose a stage incentive mechanism, including a hard stage incentive reward function and a soft stage incentive reward function. Extensive experiments show that the soft stage incentive reward function is able to improve the convergence rate by up to 46.9% with the state-of-the-art DRL methods. The percentage increase in the convergence mean reward was 4.4-15.5% and the percentage decreases with respect to standard deviation were 21.9-63.2%. In the evaluation experiments, the success rate of trajectory planning for a robot manipulator reached 99.6%.


翻译:(这项工作已提交IEEEE, 供可能出版。 版权可以不经通知转让, 之后本版本可能无法再进入。 )为了提高在随机工作环境中以机器人操纵者轨迹规划为基础的深强化学习( DRL)方法的效率,我们提出了三种密集的奖赏功能。 这些奖赏与传统的稀有奖励不同。 首先, 提议一个姿态奖励功能, 以更合理的轨迹加快学习过程, 以模拟距离和方向限制, 从而降低勘探的失明程度。 其次, 提议一个跳跃奖励功能, 通过模拟联合限制的距离和移动距离来提高学习过程的稳定性。 最后, 为了进一步提高学习效率, 我们受到人类行为认知过程的启发, 并提出一个阶段奖励机制, 包括硬阶段奖励功能和软阶段奖励功能。 广泛的实验表明, 软阶段奖励功能能够提高趋同率, 达到46.9%, 从而降低探索的失明程度。 趋同率提高的百分比是4.-15.5 %, 与标准飞行轨迹成功率降低的百分比是21.9-6. 。

0
下载
关闭预览

相关内容

【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2021年6月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员