This paper describes deep learning models based on convolutional neural networks applied to the problem of predicting EM wave propagation over rural terrain. A surface integral equation formulation, solved with the method of moments and accelerated using the Fast Far Field approximation, is used to generate synthetic training data which comprises path loss computed over randomly generated 1D terrain profiles. These are used to train two networks, one based on fractal profiles and one based on profiles generated using a Gaussian process. The models show excellent agreement when applied to test profiles generated using the same statistical process used to create the training data and very good accuracy when applied to real life problems.
翻译:本文介绍基于用于预测EM波在农村地形上传播问题的进化神经网络的深层学习模型。一个以瞬间方法解答并加速使用快速远地近似法的表面整体方程公式用于生成合成培训数据,其中包括随机生成的1D地形剖面图所计算的路径损失。这些数据用于培训两个网络,一个基于分形剖面图,一个基于使用高西亚过程产生的剖面图。模型在应用用于测试生成的剖面图时,与用于创建培训数据的统计程序相同,在应用于实际生活问题时,精确度很高。