This paper provides fascinating connections between several mathematical problems which lie on the intersection of several mathematics subjects, namely algebraic geometry, approximation theory, complex-harmonic analysis and high dimensional data science. Modern techniques in algebraic geometry, approximation theory, computational harmonic analysis and extensions develop the first of its kind, a unified framework which allows for a simultaneous study of labeled and unlabeled near alignment data problems in of $\mathbb R^D$ with the near isometry extension problem for discrete and non-discrete subsets of $\mathbb R^D$ with certain geometries. In addition, the paper surveys related work on clustering, dimension reduction, manifold learning, vision as well as minimal energy partitions, discrepancy and min-max optimization. Numerous open problems are given.
翻译:本文提供了若干数学学科交叉点上的若干数学问题之间的令人着迷的联系,这些问题包括代数几何、近似几何学、复杂和谐分析以及高维数据科学。代数几何学、近似理论、计算和谐分析及扩展等现代技术开发了第一个此类技术,一个统一框架,允许同时研究与近异位数相近的离散和非分立子群($\mathbb R ⁇ D$)有关的贴标签和未贴标签的近对齐数据问题,这些分立和非分立分子($\mathb R ⁇ D$)与某些几何形相联。此外,文件还调查了有关集群、维度减少、多重学习、视觉以及最小能源分隔、差异和微量轴优化的工作。许多公开的问题都得到了解决。