Inspired by recent advances in the field of expert-based approximations of Gaussian processes (GPs), we present an expert-based approach to large-scale multi-output regression using single-output GP experts. Employing a deeply structured mixture of single-output GPs encoded via a probabilistic circuit allows us to capture correlations between multiple output dimensions accurately. By recursively partitioning the covariate space and the output space, posterior inference in our model reduces to inference on single-output GP experts, which only need to be conditioned on a small subset of the observations. We show that inference can be performed exactly and efficiently in our model, that it can capture correlations between output dimensions and, hence, often outperforms approaches that do not incorporate inter-output correlations, as demonstrated on several data sets in terms of the negative log predictive density.
翻译:在以专家为基础的高斯进程近似(GPs)领域的最新进展的启发下,我们提出了一种以专家为基础的方法,用单一产出GP专家来应对大规模多产出回归。 使用一种结构严密的单一产出GP组合,通过概率电路编码,使我们能够准确地捕捉多种产出维度之间的相互关系。 通过循环分割共变空间和产出空间,我们模型中的后推论减少了单产出GP专家的推论,而单产出专家只需以一小部分观测结果为条件。我们表明,在模型中可以准确和有效地进行推论,它可以捕到产出维度之间的关联,因此,它往往会超越不包含产出相关性的方法。 从负日志预测密度的数套数据中可以看出。