Although the deepfake detection based on convolutional neural network has achieved good results, the detection results show that these detectors show obvious performance degradation when the input images undergo some common transformations (like resizing, blurring), which indicates that the generalization ability of the detector is insufficient. In this paper, we propose a novel block shuffling learning method to solve this problem. Specifically, we divide the images into blocks and then introduce the random shuffling to intra-block and inter-block. Intra-block shuffling increases the robustness of the detector and we also propose an adversarial loss algorithm to overcome the over-fitting problem brought by the noise introduced by shuffling. Moreover, we encourage the detector to focus on finding differences among the local features through inter-block shuffling, and reconstruct the spatial layout of the blocks to model the semantic associations between them. Especially, our method can be easily integrated with various CNN models. Extensive experiments show that our proposed method achieves state-of-the-art performance in forgery face detection, including good generalization ability in the face of common image transformations.


翻译:尽管基于神经神经网络的深层假发现取得了良好结果,但检测结果显示,这些探测器显示,当输入图像发生一些常见变异(如重塑、模糊)时,其性能明显退化,这表明探测器的普及能力不足。在本文件中,我们建议采用新的区块冲洗学习方法来解决这一问题。具体地说,我们将这些图像分为块块块,然后将随机冲洗引入区内和区际间。区间冲洗提高了探测器的强度,我们还提议采用一种损耗算法来克服因冲洗噪音带来的超适配问题。此外,我们鼓励探测器侧重于通过隔块间冲洗找到地方特征之间的差异,并重建街区的空间布局,以模拟它们之间的语义联系。特别是,我们的方法可以很容易地与各种CNN模型结合。广泛的实验表明,我们提出的方法在伪造面检测方面达到了最先进的性能,包括面对共同图像变换时良好的对抗性能。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关基金
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员