In this paper, we present a general framework for low-level vision tasks including image compression artifacts reduction and image denoising. Under this framework, a novel concatenated attention neural network (CANet) is specifically designed for image restoration. The main contributions of this paper are as follows: First, by applying concise but effective concatenation and feature selection mechanism, we establish a novel connection mechanism which connect different modules in the modules stacking network. Second, both pixel-wise and channel-wise attention mechanisms are used in each module convolution layer, which promotes further extraction of more essential information in images. Lastly, we demonstrate that CANet achieves better results than previous state-of-the-art approaches with sufficient experiments in compression artifacts removing and image denoising.


翻译:在本文中,我们为低层次的愿景任务提出了一个总体框架,包括图像压缩工艺品的减少和图像脱色。在这个框架内,专门设计了一个新型的集中关注神经网络(CANet)用于图像恢复。本文的主要贡献如下:首先,通过应用简洁而有效的聚合和特征选择机制,我们建立了一个新的连接机制,将模块堆叠网络中的不同模块连接起来。第二,每个模块的分层都使用像素和频道式关注机制,促进进一步提取图像中更基本的信息。最后,我们证明,CANet取得了比以往最先进的方法更好的成果,在压缩工艺品去除和图像去除方面进行了充分的实验。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
11+阅读 · 2019年4月15日
Recurrent Fusion Network for Image Captioning
Arxiv
3+阅读 · 2018年7月31日
Arxiv
21+阅读 · 2018年5月23日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员