We revisit the finite-sample behavior of just-identified instrumental variables (IV) estimators, arguing that in most microeconometric applications, just-identified IV bias is negligible and the usual inference strategies likely reliable. Three widely-cited applications are used to explain why this is so. We then consider pretesting strategies of the form $t_{1}>c$, where $t_{1}$ is the first-stage $t$-statistic, and the first-stage sign is given. Although pervasive in empirical practice, pretesting on the first-stage $F$-statistic exacerbates bias and distorts inference. We show, however, that median bias is both minimized and roughly halved by setting $c=0$, that is by screening on the sign of the estimated first stage. This bias reduction is a free lunch: conventional confidence interval coverage is unchanged by screening on the estimated first-stage sign. To the extent that IV analysts sign-screen already, these results strengthen the case for a sanguine view of the finite-sample behavior of just-ID IV.
翻译:我们重新审视了仅确定的工具变量(IV)的有限抽样行为,认为在大多数微计量应用中,仅确定为四的偏差是微不足道的,通常的推论战略可能是可靠的。有三个广泛引用的应用程序用来解释为何如此。然后我们考虑以美元1 ⁇ c$($t ⁇ 1 ⁇ c$)为表的预测试策略,美元是第一个阶段的统计,并给出了第一阶段的标志。尽管在经验实践中很普遍,但第一阶段的费-统计学预测试加剧了偏差和扭曲推论。然而,我们表明,中位偏差通过设定美元=0美元,即通过在估计的第一阶段的标志上进行筛选,是将中位偏差降低到最低,大约减半。这种减少偏差是一种免费午餐:通过筛选估计的第一阶段标志,传统信任间隔覆盖面不变。对于IV分析师的签署-屏幕已经很普遍,这些结果加强了对仅使用ID IV IV 4 的定点行为进行血清的论证。