For nonlinear supervised learning models, assessing the importance of predictor variables or their interactions is not straightforward because it can vary in the domain of the variables. Importance can be assessed locally with sensitivity analysis using general methods that rely on the model's predictions or their derivatives. In this work, we extend derivative based sensitivity analysis to a Bayesian setting by differentiating the R\'enyi divergence of a model's predictive distribution. By utilising the predictive distribution instead of a point prediction, the model uncertainty is taken into account in a principled way. Our empirical results on simulated and real data sets demonstrate accurate and reliable identification of important variables and interaction effects compared to alternative methods.
翻译:对于非线性监督的学习模式,评估预测变量或其相互作用的重要性并非直截了当,因为它在变量领域可能有所不同。可以用依赖模型预测或其衍生物的一般方法进行敏感度分析,在本地评估重要性。在这项工作中,我们通过区分模型预测分布的R'enyi差异,将基于衍生物的敏感性分析推广到巴伊西亚环境。通过利用预测分布而不是点预测,将模型的不确定性以有原则的方式考虑在内。我们在模拟和真实数据集方面的实证结果显示,与替代方法相比,准确和可靠地识别了重要的变量和互动效应。