A shellcode is a small piece of code and it is executed to exploit a software vulnerability, which allows the target computer to execute arbitrary commands from the attacker through a code injection attack. Similar to the purpose of automated vulnerability generation techniques, the automated generation of shellcode can generate attack instructions, which can be used to detect vulnerabilities and implement defensive measures. While the automated summarization of shellcode can help users unfamiliar with shellcode and network information security understand the intent of shellcode attacks. In this study, we propose a novel approach DualSC to solve the automatic shellcode generation and summarization tasks. Specifically, we formalize automatic shellcode generation and summarization as dual tasks, use a shallow Transformer for model construction, and design a normalization method Adjust QKNorm to adapt these low-resource tasks (i.e., insufficient training data). Finally, to alleviate the out-of-vocabulary problem, we propose a rulebased repair component to improve the performance of automatic shellcode generation. In our empirical study, we select a highquality corpus Shellcode IA32 as our empirical subject. This corpus was gathered from two real-world projects based on the line-by-line granularity. We first compare DualSC with six state-of-the-art baselines from the code generation and code summarization domains in terms of four performance measures. The comparison results show the competitiveness of DualSC. Then, we verify the effectiveness of the component setting in DualSC. Finally, we conduct a human study to further verify the effectiveness of DualSC.


翻译:贝壳编码是一个小代码,用于利用软件的脆弱性,使目标计算机能够通过密码注射攻击执行攻击者的任意指令。类似自动脆弱性生成技术的目的,自动生成贝壳编码可以产生攻击指令,可用于检测弱点和实施防御措施。虽然自动合成贝壳编码可以帮助不熟悉贝壳编码和网络信息安全的用户理解贝壳编码攻击的意图。在本研究中,我们提议了一种新颖的方法,即“双重”解决自动贝壳编码生成和合成任务。具体地说,我们正式将自动贝壳编码生成和合成作为双重任务,使用浅浅色变换器进行模型建设,并设计一种正常化方法,调整QKNorm以调整这些低资源任务(即培训数据不足)。最后,为了减轻弹壳编码和网络信息安全问题,我们提议了一个基于规则的修理部分,以改进自动贝壳编码生成的性能。我们在实验研究中,选择了一个高品质的 Shellcco Card IA32作为我们的实验主题。本本本项来自两个真实世界的项目,用浅色变变变的“标准”的Silal-Cal-Cal-Cal-Cal-Cal-Cal-Cal-Cal-Cal-Cal-Cal-Cal-Cal-Cal-Cal-Cal-Cal-Cal-Cal-Cal-Cal-Cal-Cal-Cal-Cal-IDal-IDal-IDal-IDal-C-I-I-IDal-IDal-Cal-Cal-Cal-Cal-Cal-Cal-Cal-C-Cal-I.

0
下载
关闭预览

相关内容

shellcode是一段不依赖于上下文的可执行机器码。
专知会员服务
44+阅读 · 2020年10月31日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Summarization with Graphical Elements
Arxiv
0+阅读 · 2022年4月15日
Arxiv
39+阅读 · 2021年11月11日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员