Recent data regulations necessitate machine unlearning (MU): The removal of the effect of specific examples from the model. While exact unlearning is possible by conducting a model retraining with the remaining data from scratch, its computational cost has led to the development of approximate but efficient unlearning schemes. Beyond data-centric MU solutions, we advance MU through a novel model-based viewpoint: sparsification via weight pruning. Our results in both theory and practice indicate that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner, closing the approximation gap, while continuing to be efficient. With this insight, we develop two new sparsity-aware unlearning meta-schemes, termed `prune first, then unlearn' and `sparsity-aware unlearning'. Extensive experiments show that our findings and proposals consistently benefit MU in various scenarios, including class-wise data scrubbing, random data scrubbing, and backdoor data forgetting. One highlight is the 77% unlearning efficacy gain of fine-tuning (one of the simplest approximate unlearning methods) in the proposed sparsity-aware unlearning paradigm. Codes are available at https://github.com/OPTML-Group/Unlearn-Sparse.
翻译:最近的数据法规要求进行机器遗忘(MU):从模型中删除特定示例的影响。虽然可以通过从零开始使用剩余数据对模型进行重新训练来实现精确的遗忘,但其计算成本导致了近似但有效的遗忘方案的开发。除了数据为中心的MU解决方案外,我们通过一种新的基于模型的视角推进MU:通过权重修剪稀疏化。我们在理论和实践中的结果表明,模型稀疏性可以提高近似unlearner的多标准遗忘性能,缩小近似差距,同时继续保持高效。有了这个见解,我们开发了两个新的稀疏感知遗忘元方案,称为“先修剪,再遗忘”和“稀疏感知遗忘”。广泛的实验表明,我们的发现和提案在各种情况下始终有益于MU,包括按类别进行数据擦除,随机数据擦除和后门数据遗忘。一个亮点是所提出的稀疏感知遗忘范例中fine-tuning(最简单的近似遗忘方法)的77%遗忘效能增益。代码可在https://github.com/OPTML-Group/Unlearn-Sparse上找到。