We present a simple syndrome-based fast Chase decoding algorithm for Reed--Solomon (RS) codes. Such an algorithm was initially presented by Wu (IEEE Trans. IT, Jan. 2012), cleverly building on properties of the Berlekamp-Massey (BM) algorithm. Wu devised a fast polynomial-update algorithm to construct the error-locator polynomial (ELP) as the solution of a certain linear-feedback shift register (LFSR) synthesis problem. This results in a conceptually complicated algorithm, divided into $8$ subtly different cases. Moreover, Wu's polynomial-update algorithm is not immediately suitable for working with vectors of evaluations. Therefore, complicated modifications were required in order to achieve a true "one-pass" Chase decoding algorithm, that is, a Chase decoding algorithm requiring $O(n)$ operations per modified coordinate, where $n$ is the RS code length. The main result of the current paper is a conceptually simple syndrome-based fast Chase decoding of RS codes. Instead of developing a theory from scratch, we use the well-established theory of Groebner bases for modules over $\mathbb{F}_q[X]$ (where $\mathbb{F}_q$ is the finite field of $q$ elements, for $q$ a prime power). The basic observation is that instead of Wu's LFSR synthesis problem, it is much simpler to consider "the right" module minimization problem. The solution to this minimization problem is a simple polynomial-update algorithm that avoids syndrome updates and works seamlessly with vectors of evaluations. As a result, we obtain a conceptually simple algorithm for one-pass Chase decoding of RS codes. Our algorithm is general enough to work with any algorithm that finds a Groebner basis for the solution module of the key equation as the initial algorithm, and it is not tied only to the BM algorithm.


翻译:我们为Reed- Solomon (RS) 代码提出了一个简单的基于综合症的快速大通解码算法。 这个算法最初是由 Wu (IEEE Trans.IT. Jan. 2012) 提供的, 巧妙地在 Berlekamp- Massey (BM) 算法的属性上建构。 吴设计了一个快速的多式更新算法, 以构建错误定位器的多功能化算法( ELP), 作为某些线性反馈转换登记册( LFSR) 合成问题的解决方案。 这导致一个概念上复杂的算法, 分为8美元以下不同的案例。 此外, 吴的多功能化算算算法的算法并不立即适合与评价的矢量合作。 因此, 要实现真正的“ 一次性” Chase decoal- pass 解码算法的快速化算法, 也就是用一个简单的解算法的模型, 一个简单的解算法的解算法, 一个简单的解算法的解法的解算法, 一个简单的解算法的解法, 一个简单的解算法, 一个简单的解算法的解的解的解算法, 一个简单的解算法的解算法的解算法的解算法, 一个基础, 一个简单的解的解的解的解的解的解的解的解算法的解算法的解是, 一个简单的解算法, 一个基础, 一个基础, 一个基础, 一个基础, 一个基础, 一个简单的解的解的解算法的解的解算法的解的解算法的解算法的解算法, 。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【伯克利】再思考 Transformer中的Batch Normalization
专知会员服务
40+阅读 · 2020年3月21日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
搜狗开源机器阅读理解工具箱
专知
19+阅读 · 2019年5月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2021年3月13日
Deep Neural Network Approximation Theory
Arxiv
0+阅读 · 2021年3月12日
Arxiv
0+阅读 · 2021年3月11日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【伯克利】再思考 Transformer中的Batch Normalization
专知会员服务
40+阅读 · 2020年3月21日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
搜狗开源机器阅读理解工具箱
专知
19+阅读 · 2019年5月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员