A fundamental task in the analysis of datasets with many variables is screening for associations. This can be cast as a multiple testing task, where the objective is achieving high detection power while controlling type I error. We consider $m$ hypothesis tests represented by pairs $((P_i, X_i))_{1\leq i \leq m}$ of p-values $P_i$ and covariates $X_i$, such that $P_i \perp X_i$ if $H_i$ is null. Here, we show how to use information potentially available in the covariates about heterogeneities among hypotheses to increase power compared to conventional procedures that only use the $P_i$. To this end, we upgrade existing weighted multiple testing procedures through the Independent Hypothesis Weighting (IHW) framework to use data-driven weights that are calculated as a function of the covariates. Finite sample guarantees, e.g., false discovery rate (FDR) control, are derived from cross-weighting, a data-splitting approach that enables learning the weight-covariate function without overfitting as long as the hypotheses can be partitioned into independent folds, with arbitrary within-fold dependence. IHW has increased power compared to methods that do not use covariate information. A key implication of IHW is that hypothesis rejection in common multiple testing setups should not proceed according to the ranking of the p-values, but by an alternative ranking implied by the covariate-weighted p-values.


翻译:分析包含许多变量的数据集的基本任务就是筛选关联。 这可以作为一个多重测试任务, 目标是在控制I型错误的同时实现高检测功率。 我们考虑一对( (P_i, X_i)) $1\\leq i\leq m} 美元 p- 价值的假设测试 $P_ i$ 美元, 并使用x_ i 美元, 例如如果 $H_ 美元为空, 则以美元计算 $_ i\ perp X_ i$ 。 这里, 我们展示了如何使用关于假设值之间异差值的变量中可能可获得的信息, 来增加能量, 而不是使用仅使用 $P_ i 美元 的常规程序。 为此, 我们通过独立 Hypothesisighting (IHW) 框架更新了现有的加权多重测试程序, 以计算为变量函数的函数。 Finite 样本保证, 例如, 错误的发现率(FDR) 控制来自交叉加权, 一个数据分割法方法,, 将数据分割法方法可以将数据转换为自动缩缩缩缩缩缩缩缩缩缩缩 。

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年4月10日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
39+阅读 · 2020年3月25日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年2月28日
Arxiv
0+阅读 · 2021年10月6日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
专知会员服务
22+阅读 · 2021年4月10日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
39+阅读 · 2020年3月25日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年2月28日
Top
微信扫码咨询专知VIP会员