We explore the abilities of two machine learning approaches for no-arbitrage interpolation of European vanilla option prices, which jointly yield the corresponding local volatility surface: a finite dimensional Gaussian process (GP) regression approach under no-arbitrage constraints based on prices, and a neural net (NN) approach with penalization of arbitrages based on implied volatilities. We demonstrate the performance of these approaches relative to the SSVI industry standard. The GP approach is proven arbitrage-free, whereas arbitrages are only penalized under the SSVI and NN approaches. The GP approach obtains the best out-of-sample calibration error and provides uncertainty quantification.The NN approach yields a smoother local volatility and a better backtesting performance, as its training criterion incorporates a local volatility regularization term.
翻译:我们探索两种机能学习方法对欧洲香草选择价格进行无仲裁性内插的能力,这两种方法共同产生相应的当地波动表面:一种基于价格的无仲裁制约下的有限维高斯进程回归法,以及一种基于隐含的挥发性对套利进行惩罚的神经网方法。我们展示了这些方法相对于SSVI行业标准的业绩。GP方法被证明是无仲裁性的,而套利办法仅受SSVI和NN方针的处罚。GP方法获得了最佳的标本外校准错误并提供不确定性的量化。NNW方法产生一种更平滑的地方波动和更好的反测试性能,因为其培训标准包含一个地方波动性规范术语。