In this study, we introduce a toll lane framework that optimizes the mixed flow of autonomous and high-occupancy vehicles on freeways, where human-driven and autonomous vehicles of varying commuter occupancy share a segment. Autonomous vehicles, with their ability to maintain shorter headways, boost traffic throughput. Our framework designates a toll lane for autonomous vehicles with high occupancy to use free of charge, while others pay a toll. We explore the lane choice equilibria when all vehicles minimize travel costs, and characterize the equilibria by ranking vehicles by their mobility enhancement potential, a concept we term the mobility degree. Through numerical examples, we demonstrate the framework's utility in addressing design challenges such as setting optimal tolls, determining occupancy thresholds, and designing lane policies, showing how it facilitates the integration of high-occupancy and autonomous vehicles. We also propose an algorithm for assigning rational tolls to decrease total commuter delay and examine the effects of toll non-compliance. Our findings suggest that self-interest-driven behavior mitigates moderate non-compliance impacts, highlighting the framework's resilience. This work presents a pioneering comprehensive analysis of a toll lane framework that emphasizes the coexistence of autonomous and high-occupancy vehicles, offering insights for traffic management improvements and the integration of autonomous vehicles into existing transportation infrastructures.
翻译:暂无翻译