We study the problem of robust domain adaptation in the context of unavailable target labels and source data. The considered robustness is against adversarial perturbations. This paper aims at answering the question of finding the right strategy to make the target model robust and accurate in the setting of unsupervised domain adaptation without source data. The major findings of this paper are: (i) robust source models can be transferred robustly to the target; (ii) robust domain adaptation can greatly benefit from non-robust pseudo-labels and the pair-wise contrastive loss. The proposed method of using non-robust pseudo-labels performs surprisingly well on both clean and adversarial samples, for the task of image classification. We show a consistent performance improvement of over $10\%$ in accuracy against the tested baselines on four benchmark datasets.
翻译:我们研究了在无目标标签和源数据的情况下对域进行稳健调整的问题,认为稳健调整是针对对抗性干扰的,本文件旨在回答找到正确战略的问题,以使目标模型在无源数据的情况下,在设定不受监督的域适应时,能够使目标模型稳健和准确。本文的主要结论是:(一) 稳健源模型可以稳健地转移给目标;(二) 稳健的域调整可以大大受益于非紫外伪标签和对称对比性损失。拟议的使用非紫外假标签的方法在清洁和对称性样本上都表现得惊人地出色,用于图像分类工作。我们显示,与四个基准数据集的测试基准基准基准相比,在准确性方面持续提高了1 000多美元。