PCANet and its variants provided good accuracy results for classification tasks. However, despite the importance of network depth in achieving good classification accuracy, these networks were trained with a maximum of nine layers. In this paper, we introduce a residual compensation convolutional network, which is the first PCANet-like network trained with hundreds of layers while improving classification accuracy. The design of the proposed network consists of several convolutional layers, each followed by post-processing steps and a classifier. To correct the classification errors and significantly increase the network's depth, we train each layer with new labels derived from the residual information of all its preceding layers. This learning mechanism is accomplished by traversing the network's layers in a single forward pass without backpropagation or gradient computations. Our experiments on four distinct classification benchmarks (MNIST, CIFAR-10, CIFAR-100, and TinyImageNet) show that our deep network outperforms all existing PCANet-like networks and is competitive with several traditional gradient-based models.


翻译:PCANet及其变体为分类任务提供了良好的准确性结果,然而,尽管网络深度对于实现良好的分类准确性十分重要,这些网络还是经过最多9个层次的培训。在本文件中,我们引入了一个残余的补偿演变网络,这是第一个具有数百个层次的类似于CPANet的网络,同时提高了分类准确性。拟议网络的设计由多个革命层组成,每个层随后都有后处理步骤和一个分类器。为了纠正分类错误并大大提高网络的深度,我们用来自前所有层次残余信息的新的标签对每一层进行训练。这一学习机制是通过在不进行反向调整或梯度计算的情况下在单个远端跨过网络层完成的。我们在4个不同的分类基准(MNIST、CIFAR-10、CIFAR-100和TinyImageNet)上的实验表明,我们的深网络超越了所有现有的CPANet类似网络,并且与若干传统的梯度模型具有竞争力。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月17日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员